# Analysis of the distribution of gender in STEM fields in Canada 

Version 1.1

NSERC Chairs for Women in Science and Engineering CRSNG Chaires pour les femmes en sciences et génie

BC and Yukon | Prairies | Ontario | Québec| Atlantic

## Preferred Citation:

Perreault, A., Franz-Odendaal, T., Langelier, E., Farenhorst, A., Mavriplis, C., Shannon, L. (2018). Analysis of the distribution of gender in STEM fields in Canada. Version 1.1.

At the time of preparing this report, the NSERC Chairs for Women in Science and Engineering were:

> Dr. Lesley Shannon (BC and Yukon)
> Dr. Annemieke Farenhorst (Prairies)
> Dr. Catherine Mavriplis (Ontario)
> Dr. Eve Langelier (Quebec)
> Dr. Tamara Franz-Odendaal (Atlantic)

Access to the Statistics Canada survey data used in this study was granted to Ms Perreault and permission to release these files was obtained by Ms Perreault. The data for this report come from the 2011 National Household Survey (NHS), the Labour Force Survey (LFS) 2001-2016, and the National Graduates Survey (NGS) 200-2009. The response rate for the NHS was $68 \%$. The LFS is conducted monthly and provides information on major labour market trends by industry, occupation, hours worked, employment rate and unemployment rate. Data for the Northwest Territories, Yukon and Nunavut are excluded from the LFS statistics. The NGS is conducted periodically and explores the relationship between the graduates' programs of study and the employment subsequently obtained, among other things. For all three data sets, the weighted counts have been used as estimates for the populations of interest.
This research was supported by the NSERC CWSE Network fund.
Additionally, this research was supported by funds to the Canadian Research Data Centre Network (CRDCN) from the Social Science and Humanities Research Council (SSHRC), the Canadian Institute for Health Research (CIHR), the Canadian Foundation for Innovation (CFI) and Statistics Canada.

Although the research and analysis are based on data from Statistics Canada, opinions expressed do not represent the view of Statistics Canada or the Canadian Research Data Centre Network (CRDCN).

Final Report compiled on January 29 ${ }^{\text {th }}, 2018$

## Table of Contents

## 1. UNDERGRADUATE AND GRADUATE DEGREES AWARDED BY SEX

1.1 Degrees awarded in STEM fields by sex
1.2 Degrees awarded in STEM fields by sex and type of degree awarded
1.3 Degrees awarded in STEM fields by sex and visible minority status
1.4 Degrees awarded in STEM fields by sex and Indigenous status

Data sources: National Graduate Survey 2000-2009

## 2. MAJOR FIELD OF STUDY

2.1 Major field of study in STEM fields by sex
2.2 Major field of study in STEM fields by sex and six regions
2.3 Major field of study in STEM fields by sex and visible minority status
2.4 Major field of study in STEM fields by sex, visible minority status and five regions
2.5 Major field of study in STEM fields by sex and immigrations status
2.6 Major field of study in STEM fields by sex, immigration status and six regions
2.7 Major field of study in STEM fields by sex, immigration status and five regions
2.8 Major field of study in STEM fields by sex and generation status
2.9 Major field of study in STEM fields by sex, generation status and six regions
2.10 Major field of study in STEM fields by sex and Indigenous status
2.11 Major field of study in STEM fields by sex, Indigenous status and six regions

Data sources: National Hoursehold Survey 2011

## 3. WAGES AND EMPLOYMENT IN STEM FIELDS

3.1 Wages in STEM fields by sex
3.2 Wages in STEM fields by sex and program
3.3 Employment rates in STEM fields by sex and program

Data sources: Labour Force Survey 2001-2016

## 4. APPENDIX

4.1.Tables of counts for undergraduate and graduate degrees awarded by sex
4.2 Tables of counts for major field of study
4.3 Tables of counts for employment rates in STEM fields by sex and program
4.4 Data sources and endnotes

## CANADA

## 1. UNDERGRADUATE AND GRADUATE DEGREES AWARDED IN STEM FIELDS

The population of interest is graduates from Canadian public post-secondary education institutions (universities, colleges and trade schools) who graduated or completed the requirements for degrees, diplomas or certificates during the year in question ${ }^{1}$, and who reported their degree of study as one of the following STEM fields: agriculture, biology, chemistry, computer science, engineering, general science, mathematics and physics.

### 1.1 DEGREES AWARDED BY SEX

The distribution of degrees awarded by sex, across gender and year is explored (Chart 1.1). For agriculture, general science and chemistry, the distribution of sex is approximately the same for males as for females. In agriculture, females represented slightly fewer of the degrees awarded, at 41.6\%. This increased in 2009 to approximately 50.6\%. The reverse was seen in chemistry, with females representing $48.7 \%$ of degrees awarded in 2000 , but only $42.1 \%$ in 2009.

Chart 1.1 - Proportion of degrees awarded in STEM fields by sex in Canada, from 2000-2009



$\square$ Female ■Male

- Female ■Male




Source: NGS 2000-2009
In biology, the distribution of degrees awarded to females remained approximately the same throughout the years, at $62.6 \%$ in 2000, and $63.1 \%$ in 2009. There was a decrease in the degrees awarded to females in mathematics, from 43.1\% in 2000, to $34.9 \%$ in 2009. The same trend was seen in engineering, with females representing $20.2 \%$ of the degrees awarded in 2000 , and slightly fewer in 2009 at $17.2 \%$. There was a noticeable drop in the distribution of degrees awarded by gender in physics and computer science from 2000 to 2009 . In 2000, females represented $30.1 \%$ of degrees awarded in physics, and only $11.8 \%$ in 2009 . For computer science, women represented $35.7 \%$ of degrees awarded in 2000 , and only $18.1 \%$ in 2009.

### 1.2 DEGREES AWARDED BY SEX AND TYPE OF DEGREE AWARDED

The distribution of degree awarded across the three types of degrees is explored: Bachelor, Masters and Doctorate, for those who reported their degree of study as one of the following STEM fields: agriculture, biology, chemistry/physics, computer science, engineering, general science and mathematics. It is important to note that this does not include post-secondary trade certificates.

The distribution of females across STEM fields by type of degree was lower than males, for all three degree types (Chart 1.2). For Bachelor's degrees, the distribution of females who were awarded degrees in STEM fields was highest, at $42.2 \%$ in 2000, and lowest in 2009, at $37.3 \%$. The distribution of Masters degrees awarded to females remained relatively constant, and was at $37.2 \%$ in 2009. For Doctorate degrees awarded, the distribution of females was lowest in 2000 , at $26.8 \%$, and rose to $33.9 \%$ in 2009.

Chart 1.2 - Proportion of degrees awarded in STEM fields by sex in Canada, from 2000-2009
100.00\%


Source: NGS 2000-2009

For all types of degrees awarded in agriculture, the distribution of females had increased from 2000 to 2009 (Chart 1.3). For Bachelors degrees, the distribution of females was $46.2 \%$ in 2000, and increased to $62.7 \%$ in 2009. For Masters degrees, the distribution of females who were awarded degrees was $44.6 \%$, and rose to $61.5 \%$ in 2009. For Doctorate degrees awarded, the distribution of females was $42.0 \%$ in 2000, and $58.3 \%$ in 2009.

Chart 1.3-Percentage of degrees awarded in agriculture by sex in Canada, from 2000-2009.


Source: NGS 2000-2009
Overall, in biology, the higher the education level, the lower the distribution of degrees awarded to females (Chart 1.4). For Bachelors degrees, the distribution remained relatively stable from 2000 to 2009, at approximately $65 \%$. For Masters degrees, the distribution of degrees awarded to females was $67.6 \%$ in 2005, and fell to $55.6 \%$ in 2009. For Doctorate degrees awarded in biology, the distribution of females was $41.2 \%$ in 2000, and rose to $54.0 \%$ in 2009.

Chart 1.4 - Percentage of degrees awarded in biology by sex in Canada, from 2000-2009.


Source: NGS 2000-2009

For degrees awarded in chemistry/physics, the distribution of females was lowest for Doctorate degrees (Chart 1.5). For Bachelor's degrees in 2000, 40.6\% of degrees awarded were to females, and dropped in 2009 to $27.1 \%$. For Masters degrees, the distribution of degrees awarded to females was $43.0 \%$ in 2000 , and $42.0 \%$ in 2009. For Doctorate degrees, females represented $20.8 \%$ of degrees awarded in 2000. This rose slightly to $27.2 \%$ in 2009.


Source: NGS 2000-2009

For all types of degrees awarded in computer science, the distribution of degrees awarded to females had decreased from 2000 to 2009 (Chart 1.6). For Bachelor's degrees in 2000, the distribution of degrees awarded to females was $32.8 \%$. This decreased by more than half in 2009, to $15.8 \%$. For Masters degrees awarded, the distribution awarded to females in 2000 was $43.0 \%$, and lowered to $32.8 \%$ in 2009. For Doctorate degrees awarded, the distribution of degrees awarded to females was $32.1 \%$ in 2000, and 27.3\% in 2009.

Chart 1.6-Percentage of degrees awarded in computer science by sex in Canada, from 2000-2009.


Source: NGS 2000-2009

The distribution of degrees awarded to females in engineering was relatively low for all degree types (Chart 1.7). For Bachelor's degrees, the distribution awarded to females was $27.8 \%$, and lowered to $18.6 \%$ in 2009. For Masters degrees awarded to females, the distribution was $24.6 \%$ in 2000, and $24.3 \%$ in 2009. The distribution of Doctorate degrees awarded to females had increased from $13.8 \%$ in 2000 to $21.2 \%$ in 2009.

Chart 1.7-Percentage of degrees awarded in engineering by sex in Canada, from 2000-2009.


Source: NGS 2000-2009

For Bachelor's degrees awarded in general science, the distribution of females was $53.0 \%$ in 2000, and $53.8 \%$ in 2009 (Chart 1.8). For Masters degrees awarded, $30 \%$ were awarded to females in 2000. This increased slightly by 2009, to $39.8 \%$. The distribution of degrees awarded in general science at the Doctorate level to females was $25.2 \%$, and lowered to $20.0 \%$ by 2009.

Chart 1.8 - Percentage of degrees awarded in general science by sex in Canada, from 2000-2009.


Source: NGS 2000-2009

In mathematics, there had been a decrease in the distribution of degrees awarded to females from $34.12 \%$ in 2000, to $27.9 \%$ in 2009 (Chart 1.9). However, the opposite was seen at the Masters and Doctoral level. For degrees awarded at the Masters level, the distribution of females in 2000 was $29.4 \%$. This increased to $46.2 \%$ in 2009 . For degrees awarded at the Doctoral level, $14.4 \%$ were awarded to females in 2000, and this increased to $24.3 \%$ in 2009.

Chart 1.9 - Percentage of degrees awarded in mathematics by sex in Canada, from 2000-2009.


Source: NGS 2000-2009

### 1.3 DEGREES AWARDED BY SEX AND VISIBLE MINORITY STATUS

The population of interest is graduates from Canadian public post-secondary education institutions (universities, colleges, trade schools) who graduated or completed the requirements for degrees, diplomas or certificates during the year in question, who reported their degree of study as one of the following STEM fields: agriculture, biology, chemistry, computer science, engineering, general science, mathematics and physics, and who identify as a visible minority or not.

The distribution of degrees awarded by sex, across visible minority status is explored. Visible minority refers to whether a person belongs to a visible minority group as defined by the Employment Equity Act, which defines visible minorities as "persons, other than Aboriginal peoples, who are non-Caucasian in race or non-white in colour". The visible minority population consists mainly of the following groups: South Asian, Chinese, Black, Filipino, Latin American, Arab, Southeast Asian, West Asian, Korean and Japanese ${ }^{2}$.

For all of Canada, the distribution of gender across visible minority status was relatively constant from 2000-2009, with women receiving approximately $35 \%$ of degrees awarded and men receiving approximately $65 \%$ (Chart 1.10).

Chart 1.10-Percentage of degrees awarded in STEM fields by sex and visible minority status in Canada, from 2000-2009.


Source: NGS 2000-2009

In agriculture, the distribution of degrees awarded to females was similar for visible minorities and for those who did not identify as visible minorities, at approximately 40\% (Chart 1.11). The distribution of degrees awarded to nonminority females was $50.4 \%$ in 2009 , slightly below the distribution of degrees awarded to visible minority females at 57.3\%.

Chart 1.11- Percentage of degrees awarded in agriculture by sex and visible minority status in Canada, from 2000-2009.


Source: NGS 2000-2009

The distribution of degrees awarded to females in biology was approximately the same for visible minorities as for nonvisible minorities (Chart 1.12). In 2000, the distribution of females for visible minorities was $60.7 \%$, and $62.44 \%$ for nonvisible minorities. In 2009, the distribution of degrees awarded to visible minority females was $64.6 \%$, and slightly lower for non-visible minority females at 62.3\%.

Chart 1.12-Percentage of degrees awarded in biology by sex and visible minority status in Canada, from 2000-2009.


Source: NGS 2000-2009
The distribution of degrees awarded to non-visible minority females had decreased from 2000 to 2009 (Chart 1.13). In 2000, the distribution was almost equal, with $47.0 \%$ of degrees awarded to females. In 2009, this decreased to $34.9 \%$. For visible minorities, the distribution of degrees awarded to females was $55.6 \%$ in 2000 , and decreased slightly to 54.8\% in 2009.

Chart 1.13- Percentage of degrees awarded in chemistry by sex and visible minority status in Canada, from 2000-2009.


Source: NGS 2000-2009

The distribution of degrees awarded to females had decreased from 2000 to 2009, for both visible minorities and those who identified as non-visible minorities in computer science (Chart 1.14). For visible minorities, the distribution of degrees awarded to females was $35.2 \%$ in 2000, and decreased to $20.4 \%$ in 2009 . For non-visible minorities, the distribution of degrees awarded to females was $37.1 \%$ in 2000, and 16.3\% in 2009.

Chart 1.14-Percentage of degrees awarded in computer science by sex and visible minority status in Canada, from 2000-2009.


Source: NGS 2000-2009
The distribution of degrees awarded to females had decreased slightly in engineering for both visible and non-visible minorities (Chart 1.15). In 2000, the distribution of degrees awarded non-visible minority females was 20.2\%, and decreased to $17.1 \%$ in 2009. For visible minorities, the distribution of degrees awarded to females was $19.8 \%$ in 2000 , and $17.2 \%$ in 2009.

Chart 1.15- Percentage of degrees awarded in engineering by sex and visible minority status in Canada, from 2000-2009.


Source: NGS 2000-2009

For general science, the distribution of degrees awarded to females for visible minorities was $51.4 \%$ in 2000, and lowered to $47.5 \%$ in 2009 (Chart 1.16). For non-visible minorities, the distribution of degrees awarded to females was $66.5 \%$ in 2000, and lowered to $52.4 \%$ in 2009.
Chart 1.16 - Percentage of degrees awarded in STEM general science by sex and visible minority status in Canada, from 20002009.


Source: NGS 2000-2009
For both visible and non-visible minorities, the distribution of degrees awarded to females had decreased in mathematics from 2000 to 2009 (Chart 1.17). For non-visible minorities, the distribution of degrees awarded to females was $40 \%$, and decreased to $36.0 \%$ in 2009. For visible minorities, the distribution of degrees awarded to females was approximately the same as for males, at 51\%. This distribution decreased to $32.6 \%$ in 2009.

Chart 1.17 - Percentage of degrees awarded in mathematics by sex and visible minority status in Canada, from 2000-2009.


Source: NGS 2000-2009

The distribution of degrees awarded to females is physics had decreased quite substantially from 2000 to 2009 (Chart 1.18). For visible minorities, the distribution of females was $40.5 \%$ in 2000 . This decreased to $16.0 \%$ in 2009 . For nonvisible minorities, the distribution of degrees awarded to females in 2000 was $20.0 \%$, and decreased to $10.8 \%$ in 2009 .

Chart 1.18 - Percentage of degrees awarded in physics by sex and visible minority status in Canada, from 2000-2009.


Source: NGS 2000-2009

### 1.4 DEGREES AWARDED BY SEX AND INDIGENOUS STATUS

The population of interest is graduates from Canadian public post-secondary education institutions (universities, colleges, trade schools) who graduated or completed the requirements for degrees, diplomas or certificates during the year in question ${ }^{2}$, and who reported their degree of study as one of the following STEM fields: agriculture, biology, chemistry, computer science, engineering, general science, mathematics and physics and who identified as Indigenous or not.

The distribution of degrees awarded by sex, across visible Indigenous status is explored. Indigenous status refers to whether the person reported being an Aboriginal person; that is, First Nations, Métis or Inuk and/or being a Registered or Treaty Indian (that is, registered under the Indian Act of Canada) and/or being a member of a First Nation or Indian band ${ }^{3}$.

For all of Canada, the distribution of gender across Indigenous status remained relatively constant from 2000-2009 (Chart 1.19), with females receiving approximately $34 \%$ of degrees awarded. A similar trend was seen for non-Indigenous people, with females receiving approximately a third of all degrees awarded. Men received about $62 \%$ of degrees regardless of indigenous status.

Chart 1.19 - Percentage of degrees awarded in STEM fields by sex and Indigenous status in Canada, from 2000-2009.


Source: NGS 2000-2009

In biology, Indigenous females represented 81.2\% degrees awarded to Indigenous people in biology in 2000 (Chart 1.20). This was much higher than for non-Indigenous females, who represented $62.2 \%$ of their respective degrees awarded. The proportion of Indigenous females in biology lowered to $71.4 \%$ in 2005, and increased to $83.6 \%$ in 2009. Non-indigenous females represented $66.8 \%$ of degrees awarded in biology to non-Indigenous people in 2005, and 62.2\% in 2009.


Source: NGS 2000-2009

In 2000, the distribution of gender for Indigenous females and non-Indigenous females in general science were very similar, at $49.4 \%$ for Indigenous females and $44.2 \%$ for non-Indigenous females (Chart 1.21). A larger difference was seen in 2005, when the proportion of Indigenous females rose to $63.6 \%$, while the proportion of non-Indigenous females was $48.4 \%$. In 2009, Indigenous females represented $61.6 \%$ of all general science degrees awarded to Indigenous people, while non-Indigenous females represented 45.2\%

Chart 1.21 - Percentage of degrees awarded in general science by sex and Indigenous status in Canada, from 2000-2009.


Source: NGS 2000-2009

The distribution of gender across degrees awarded was much lower for Indigenous females than for non-Indigenous females in 2000 (Chart 1.22). That year, Indigenous females represented $8.4 \%$ of engineering, while non-Indigenous females represented $20.4 \%$. In 2000, the difference was less, with Indigenous females representing $14.9 \%$ of all engineering degrees awarded to Indigenous people, while non-Indigenous females represented 19.3\%. In 2009, Indigenous females represented $9.2 \%$ of degrees awarded to Indigenous peoples, while non-Indigenous females represented 17.9\%.

Chart 1.22-Percentage of degrees awarded in engineering by sex and visible minority status in Canada, from 2000-2009.


Source: NGS 2000-2009

In math/computer science, the distribution of gender for Indigenous and non-Indigenous people was very similar in 2000 (Chart 1.23). That year, Indigenous females represented $43.6 \%$ of degrees awarded, while non-Indigenous females represented $36.6 \%$ of degrees awarded to non-Indigenous people. In 2009, the proportions were lower, with Indigenous females representing $26.4 \%$ of degrees awarded in math/computer science to Indigenous people, while non-Indigenous females represented $20.7 \%$ of degrees awarded to non-Indigenous people.

Chart 1.23 - Percentage of degrees awarded in math/computer science by sex and visible minority status in Canada, from 20002009.


Source: NGS 2000-20

## 2. MAJOR FIELD OF STUDY

The major field of study is the predominant discipline or area of learning or training of highest completed postsecondary certificate, diploma or degree ${ }^{3}$. It is important to note that this population only includes persons who reported completing or are in the process of completing some form of postsecondary education (including technical trades).

### 2.1 MAJOR FIELD OF STUDY BY SEX

Major field of study was explored across STEM fields: agriculture, biochemistry, biology, chemistry, computer science, engineering, general science, mathematics and physics.

The distribution of gender across major field of study was approximately equal for biochemistry, with females representing $51.7 \%$ of those who identified biochemistry as their major field of study, and males representing $48.3 \%$. A similar trend was seen in general sciences, with females representing 47.1\% and males 52.9\%, and again in biology, with females representing $57.0 \%$ of those who identified biology as their major field of study, and males $43.0 \%$. The distribution of males in agriculture was higher than females, at $64.4 \%$ for the former, and $35.6 \%$ for the latter. Similarly, in chemistry, $60.8 \%$ of those who identified their major field of study were males, and $39.2 \%$ were females. This data is provided in Chart 2.1

Chart 2.1 - Percentage of major field of study and sex in Canada in 2011


Source: National Household Survey 2011

The largest difference in gender distribution was seen in engineering, where $13.6 \%$ of all who identified their major field of study as engineering were female. A similar trend was seen in physics, with females representing $20.3 \%$ of those who identified their major field of study as physics.

### 2.2 MAJOR FIELD OF STUDY BY SEX AND SIX REGIONS

For valid analysis across the regions, it was necessary to combine biochemistry into general science, as well as to combine chemistry and physics into one bin. The chart below (Chart 2.2) shows the distribution across gender for major field of study for all of Canada, with the combined bins, to be used as a tool for comparison across regions and with Canada. Note that the Atlantic provinces include Nova Scotia, New Brunswick, Prince Edward Island and Newfoundland and Labrador, the Prairie provinces include Alberta, Manitoba and Saskatchewan, and the North includes Yukon, the Northwest Territories and Nunavut.

Chart 2.2 - Percentage of major field of study and sex, in Canada in 2011


Source: National Household Survey 2011

In the Atlantic provinces, there was a roughly equal distribution of gender across major field of study for biology and general sciences, with females representing $52.1 \%$ of those whose major field of study was biology, and $50.7 \%$ of those whose major field of study was general sciences (Chart 2.3). Both were similar to the trends that were seen across Canada. The unequal distribution of gender in engineering was slightly more pronounced in the Atlantic, with females representing $11.3 \%$ of those who identified their major field of study as engineering.

Chart 2.3 - Percentage of major field of study and sex, for Canadians in the Atlantic provinces in 2011


Source: National Household Survey 2011
The distribution of major field of study across gender for British Columbia was very similar to the distribution across all of Canada (Chart 2.4). As in Canada, the distribution of biology and general science were close to equal for males and for females. Women represented $52.3 \%$ of those who identified biology as their major field of study, and $46.0 \%$ of those who identified general science as their major field of study. The distribution of gender was also almost the same for those who identified agriculture as their major field of study - an increase from the trend seen across Canada. As in all of Canada, women who identified engineering as their major field of study was the lowest of all the programs, at 13.6\%.

Chart 2.4 - Percentage of major field of study and sex, for Canadians in British Columbia in 2011


Source: National Household Survey 2011

The gender distribution in the Northern provinces showed slight differences in distributions across a few programs in comparison to the country-wide trend (Chart 2.5). The distribution of those who identified agriculture and mathematics as their major field of study was approximately the same for each gender, with females representing $45.0 \%$ of the respondents in agriculture and $50.0 \%$ in mathematics. This is higher than what was reported for all of Canada. Conversely, women represent $27.3 \%$ of those who reported their major field of study to be physics. This is lower than what was reported for all of Canada. The gender distribution for biology, computer science, general science and engineering were all close to the national trends.

Chart 2.5 - Percentage of major field of study and sex, for Canadians in the North in 2011


Source: National Household Survey 2011
The gender distribution of STEM fields in Ontario was very similar to the gender distribution for all of Canada (Chart 2.6). Biology and general sciences showed an approximately equal gender distribution. For agriculture, chemistry/physics and computer science, females represented about a third of those who reported those programs as their major field of study. For example, females represented $34.3 \%$ of all those who identified agriculture as their major field of study, and $32.8 \%$ of those who identified chemistry/physics as their major field of study. Females were the least represented in engineering, with $14.0 \%$ of those who identified that field as their major field of study.

Chart 2.6 - Percentage of major field of study and sex, in Ontario in 2011


Source: National Household Survey 2011

Like Ontario, the gender distribution for the Prairies was very similar to the gender distribution across major fields of study for all of Canada (Chart 2.7). Biology and general science were again approximately evenly distributed. However, females were slightly less represented in agriculture, at $29.5 \%$, compared to $35.6 \%$ for the entire country. As in all of Canada, engineering had the smallest proportion of females, with $14.5 \%$ identifying engineering as their major field of study.

Chart 2.7 - Percentage of major field of study and sex, for Canadians Prairie provinces in 2011


Source: National Household Survey 2011
In Quebec, the gender distribution was again very similar to the gender distribution across major field of study for all of Canada (Chart 2.8). Biology and general science were approximately evenly distributed, with females representing $56.2 \%$ of those who identified their major field of study as biology, and $43.7 \%$ in general science. Again, engineering had the smallest proportion of females, with $12.7 \%$ identifying engineering as their major field of study.

Chart 2.8 - Percentage of major field of study and sex, in Quebec in 2011


Source: National Household Survey 2011

### 2.3 MAJOR FIELD OF STUDY BY SEX AND VISIBLE MINORITY STATUS

The visible minority status of a person is defined as a person, other than Aboriginal peoples, who is non-Caucasian in race or non-white in color ${ }^{4}$.'This variable was explored across all Canadians who identified their major field of study as one of the STEM fields of interest; agriculture, biochemistry, biology, chemistry, computer science, engineering, general science, mathematics and physics.

Major field of study was explored across STEM fields: agriculture, biochemistry, biology, chemistry, computer science, engineering, general science, mathematics and physics, across visible minority status.

The distribution of those who identify as being visible minorities and non-visible minorities, followed relatively similar trends for certain STEM fields (Chart 2.9). For both biology, biochemistry and general science, the distribution of gender was approximately equal. About $40 \%$ of those who reported agriculture as their major field of study were female for both visible minorities and non-visible minorities. As well, the distribution of females in engineering and computer science was low for both those who identified as visible minorities and those who didn't, at approximately $30 \%$ for computer science and less than $20 \%$ for engineering.

Chart 2.9 - Percentage of major field of study, sex and visible minority status, in Canada 2011


Source: National Household Survey 2011
There were a few STEM fields that did differ in gender distribution across visible minority status. In chemistry, females represented approximately $45 \%$ of visible minorities. This rate was lower in those that did not identify as visible minorities, at approximately $34 \%$. As well, in physics, the distribution of females who identified as visible minorities and whose field of study was physics was approximately $28 \%$, and only $16 \%$ for those who did not identify as a visible minorities.

### 2.4 MAJOR FIELD OF STUDY BY SEX, VISIBLE MINORITY STATUS AND FIVE REGIONS

For valid analysis across the regions, it was necessary to combine biochemistry into general science, and to also combine physics and chemistry into one category. The chart below (Chart 2.10) shows the distribution of gender across visible minority status for all of Canada with the combined STEM categories, for ease of comparison across regions.

There were not enough observations in North for the subpopulation of those who identified as visible minorities or not to provide valid interpretations, so the North was excluded from the subsequent analysis.

Chart 2.10 - Percentage of major field of study, sex and visible minority status, in Canada 2011


Source: National Household Survey 2011

The distribution in the Atlantic provinces of gender for those who identified as visible minorities and those who did not was almost the same for those who claimed chemistry/physics and general science as their major field of study (Chart 2.11). For example, females represented $31.0 \%$ of those who identified chemistry/physics as their major field of study for both visible minorities and those who were not visible minorities. The proportion of females in engineering and mathematics was higher for visible minorities, with females representing $16.9 \%$ of those who identified engineering as their major field of study, and only $11.0 \%$ for females who were not visible minorities. The difference was larger in mathematics, with female visible minorities representing $44.0 \%$ of those whose major field of study was mathematics, and $32.0 \%$ for females who were not visible minorities. Large differences were also seen in agriculture and biology, with female visible minorities representing fewer of those who identified those programs as their major field of study. For example, visible minority females represented $38.8 \%$ of biology major field of study and $53.5 \%$ for females who were not visible minorities.

Chart 2.11 - Percentage of major field of study, sex and visible minority status, in the Atlantic provinces in 2011


Source: National Household Survey 2011
In British Columbia, the distribution of gender for visible minorities and those who are not, was relatively similar for agriculture, biology, computer science and general science (Chart 2.12). Visible minority females represented $43.9 \%$ of those who identified agriculture as their major field of study, and $43.6 \%$ for females who were not visible minorities. It is interesting to note that the gender distribution for agriculture was much more equal in British Columbia than for all of Canada (proportion of females in agriculture in Canada was approximately $37 \%$ for visible minorities and those who were not). In biology, visible minority females represented $55.9 \%$ of the major field of study, and $51.6 \%$ for females who were not visible minorities. A much larger difference was seen for females who identified chemistry/physics as their major field of study, with female visible minorities representing $41.5 \%$ of major field of study, and females who were not visible minorities at 24.3\%.

Chart 2.12
Percentage of major field of study, sex and visible minority status, in British Columbia in 2011


Source: National Household Survey 2011

As in British Columbia, the distribution of gender for visible minorities and those who were not was relatively similar in Ontario for those who identified agriculture, biology, computer science and general science as their major field of study (Chart 2.13). For example, visible minority females represented $34.2 \%$ of those who identified computer science as their major field of study, and $32.1 \%$ for females who were not visible minorities. The largest differences were seen in mathematics and chemistry/physics. Visible minority females represented $44.7 \%$ of those who identified mathematics as their major field of study, and $38.2 \%$ for females who were not visible minorities. In chemistry/physics, females represented $40.8 \%$ of visible minorities, but females were only $27.1 \%$ of those who were not visible minorities.

Chart 2.13 - Percentage of major field of study, sex and visible minority status, in Ontario in 2011


Source: National Household Survey 2011

The distribution of gender for visible minorities and those who are not in the Prairies, was relatively similar for agriculture, biology, computer science (Chart 2.14). Visible minority females represented $50.5 \%$ of those who identified general science as their major field of study, and $42.5 \%$ for females who were not visible minorities. This was a slightly larger difference than was seen for all of Canada. The largest difference was seen in chemistry/physics, where female visible minorities represented $42.6 \%$, and females who were not visible minorities in chemistry/physics represented 29.5\%..

Chart 2.14- Percentage of major field of study, sex and visible minority status, in the Prairies in 2011


Source: National Household Survey 2011
Overall, in Quebec, the distributions of gender for visible minorities and those who were not visible minorities showed fewer differences than for the distributions for the rest of Canada (Chart 2.15). For example, in agriculture, the distribution of visible minority females was $38.2 \%$ and was $38.0 \%$ for females who were not visible minorities. Even for chemistry/physics, the difference between the two distributions was less than half of the difference for all of Canada. Visible minority females represented $38.5 \%$ of those visible minorities who identified chemistry/physics as their field of major study, and $29.8 \%$ for females who were not visible minorities.

Chart 2.15 - Percentage of major field of study, sex and visible minority status, in Quebec in 2011


Source: National Household Survey 2011

### 2.5 MAJOR FIELD OF STUDY BY SEX AND IMMIGRATION STATUS

Immigrant refers to a person who is or has ever been a landed immigrant/permanent resident. This person has been granted the right to live in Canada permanently by immigration authorities ${ }^{[3]}$. This variable was explored across all Canadians who identified their major field of study as one of the STEM fields of interest; agriculture, biochemistry, biology, chemistry, computer science, engineering, general science, mathematics and physics.

The distribution of gender across immigration status was similar for certain STEM fields (Chart 2.16). For biochemistry, biology and general science, the distribution of gender for immigrants and non-immigrants was approximately equal for both. For example, female immigrants represented $52.8 \%$ of immigrants who identified biochemistry as their major field of study, while non-immigrant females represented $51.2 \%$. For agriculture and computer science, women represented approximately $35 \%$ of the gender distribution for both immigrants and non-immigrants.

Chart 2.16 - Percentage of major field of study, sex and immigration status, in Canada in 2011


Source: National Household Survey 2011
The distributions did differ for chemistry- approximately $44 \%$ of immigrants who identified their field of study as chemistry were female. For non-immigrants, $31 \%$ of females identified chemistry as their field of study. In physics, $13 \%$ of the non-immigrants were female, with this number much higher for immigrants, at $25 \%$.

### 2.6 MAJOR FIELD OF STUDY BY SEX, IMMIGRATION STATUS AND SIX REGIONS

For valid analysis across the regions, it was necessary to combine biochemistry, chemistry and physics into general science, and to combine math and computer science. As well, agriculture was dropped, since the number of observations in each cell was too low to produce reliable estimates.

The distribution of immigrants and non-immigrants across gender was approximately equal for both general science and biology (Chart 2.17). Approximately $36 \%$ of those whose field of study was math/computer science were female immigrants, with $31 \%$ for female non-immigrants. For women in engineering, approximately $17 \%$ were immigrants and $10 \%$ non-immigrant.

Chart 2.17 - Percentage of major field of study, sex and immigration status, in Canada in 2011


Source: National Household Survey 2011

In the Atlantic provinces, the trends in gender distribution of immigrants and non-immigrants were almost all opposite to the ones seen in all of Canada (Chart 2.18). There were fewer immigrant females who identified biology as their major field of study, at $40.4 \%$, compared to $54.88 \%$ for non-immigrant females. As well, in general sciences, there were fewer immigrant females at $38.2 \%$, compared to $46.9 \%$ for non-immigrant females. Finally, in math/computer science, immigrant females represented $32.1 \%$ of immigrants who identified math/computer science as their major field of study, while non-immigrants represented $40.0 \%$.

Chart 2.18 - Percentage of major field of study, sex and immigration status, in the Atlantic provinces in 2011


Source: National Household Survey 2011

In British Columbia, the distribution of gender for immigrants and non-immigrants were almost the same for biology and general sciences (Chart 2.19). For example, female immigrants represent $42.4 \%$ of immigrants who identified general science as their major field of study, while non-immigrant females represent $40.3 \%$ of non-immigrants. A larger difference was seen in math/computer science, where female immigrants represent $37.1 \%$ of immigrants in math/computer science, while non-immigrant females represent 30.1\%.


Source: National Household Survey 2011
In the North, the distribution of gender for immigrants and non-immigrants was approximately the same for engineering, general science and math/computer science (Chart 2.20). This differed from the trend seen in Canada, where more immigrant females were seen in engineering and math/computer science. For the North, immigrant females represented $40.0 \%$ of immigrants who identified math/computer science and their major field of study, while non-immigrants represent $37.7 \%$. The largest difference was seen in biology, where there were much fewer immigrant females in the North compared to the rest of Canada. Immigrant females represent $23.1 \%$ of immigrants who identified biology as their major field of study, while non-immigrants represented $58.2 \%$.

Chart 2.20 - Percentage of major field of study, sex and immigration status, in the North in 2011


Source: National Household Survey 2011

In Ontario, the distribution of gender for immigrants and non-immigrants was very similar for biology and general science (Chart 2.21). Immigrant females represented $59.8 \%$ of immigrants who identified biology as their major field of study, while non-immigrant females represented $57.7 \%$. The largest difference between the two distributions was seen in engineering, where non-immigrant females represented $10.1 \%$ and immigrant females represented $17.0 \%$.

Chart 2.21 - Percentage of major field of study, sex and immigration status, in Ontario in 2011


Source: National Household Survey 2011

The distribution of gender for immigrants and non-immigrants in the Prairies was very similar to the distribution for the rest of Canada (Chart 2.22). Immigrant females who identified general science as their major field of study represented $50.8 \%$ of all immigrants in biology, while non-immigrant females represented $55.7 \%$. The largest difference was seen in math/computer sciences, where immigrant females represented $39.4 \%$ of all immigrants in that field, and nonimmigrant females represented 32.4\%.

Chart 2.22 - Percentage of major field of study, sex and immigration status, in the Prairies in 2011


Source: National Household Survey 2011

In Quebec, the distribution of gender for immigrants and non-immigrants was almost the same for biology, general science and math/computer science (Chart 2.23). For example, immigrant females represented $56.4 \%$ of all immigrants in biology, while non-immigrant females represent $56.0 \%$. The largest difference was seen in engineering. Immigrant females represented $18.2 \%$ of immigrants who identified engineering as their major field of study, while non-immigrant females represented $10.5 \%$.

Chart 2.23 - Percentage of major field of study, sex and immigration status, in Quebec in 2011


Source: National Household Survey 2011

### 2.7 MAJOR FIELD OF STUDY BY SEX, IMMIGRATION STATUS AND FIVE REGIONS

Since there were few observations in the North, is was necessary to combine the programs into a few bins (biology, engineering, general science and math/computer science) to conduct reliable analyses. In order to investigate the programs in more detail, an analysis was also conducted with the observations from the North excluded. It is important to note that the underlying population has now changed from all Canadians who reported being immigrant or nonimmigrant who identified their major field of study as one of the STEM fields of interest; agriculture, biochemistry, biology, chemistry, computer science, engineering, general science, mathematics and physics, to Canadians (excluding the North) who reported being immigrants or non-immigrants and identified their major field of study as one of the STEM fields of interest.

For valid analysis across the regions, it was necessary to combine biochemistry into general science, and to also combine physics and chemistry into one category. The plot below shows the distribution of gender across visible minority status for all of Canada with the combined STEM categories, for ease of comparison across regions.

The distribution of immigrants and non-immigrants across gender was approximately equal for both general sciences and biology (Chart 2.24). Approximately $36 \%$ of those whose field of study was math/computer science were female immigrants, with $31 \%$ for non-immigrants. For women in engineering, there were approximately $17 \%$ immigrant and $10 \%$ non-immigrant.

Chart 2.24 - Percentage of major field of study, sex and immigration status, in Canada (minus the North) in 2011


Source: National Household Survey 2011

In the Atlantic provinces, the distribution of gender for immigrants and non-immigrants differed in comparison to the distribution for all of Canada (Chart 2.25). The distributions were very similar for mathematics and chemistry/physics. Immigrant females represented $34.6 \%$ of immigrants in mathematics, while non-immigrant females represented $33.0 \%$ of non-immigrants in mathematics. There were large differences seen in biology and agriculture. Immigrant females in biology represented $40.4 \%$ of all immigrants in biology, while non-immigrant females represented 54.9\%.

Chart 2.25 - Percentage of major field of study, sex and immigration status, in the Atlantic provinces (minus the North) in 2011


Source: National Household Survey 2011

In British Columbia, the distribution of gender for immigrants and non-immigrants was very similar to the distribution for the rest of Canada (Chart 2.26). The distributions were approximately the same for immigrants and non-immigrants in general science and biology. However, there was a difference in the distribution of agriculture in British Columbia. Immigrant females represented $37.7 \%$ of immigrants who identified agriculture as their major field of study, while nonimmigrant females represented $46.7 \%$. The largest differences were seen in mathematics and chemistry/physics. Immigrant females in chemistry/physics represented $37.1 \%$ of immigrants, while non-immigrant females represented 22.5\%.

Chart 2.26 - Percentage of major field of study, sex and immigration status, in British Columbia (minus the North) in 2011


Source: National Household Survey 2011

The distribution of gender for immigrants and non-immigrants in Ontario was very similar to the distributions for all of Canada (Chart 2.27). The distributions were almost identical for agriculture, biology and general science. Immigrant females represented $59.8 \%$ of immigrants who reported their field of major study as biology, while non-immigrant females represented $57.7 \%$. The largest differences were seen in chemistry/physics and mathematics. Immigrant females represented $44.5 \%$ in mathematics, while non-immigrant females represented 36.1\%.

Chart 2.27 - Percentage of major field of study, sex and immigration status, in Ontario (minus the North) in 2011


Source: National Household Survey 2011

The distribution of gender for immigrants and non-immigrants in the Prairies was similar to the distribution for the rest of Canada (Chart 2.28). The distributions were approximately the same for immigrants and non-immigrants in general science and agriculture. There was a difference in the distribution of biology in comparison to the rest of Canada. Immigrant females represented $50.8 \%$ of immigrants who identified biology as their major field of study, while nonimmigrant females represented $55.71 \%$. The largest differences were seen in mathematics and chemistry/physics. Immigrant females in chemistry/physics represented $40.5 \%$ of immigrants who identified chemistry/physics as their major field of study, while non-immigrant females represented $27.5 \%$.

Chart 2.28 - Percentage of major field of study, sex and immigration status, in the Prairies (minus the North) in 2011


Source: National Household Survey 2011
In Quebec, the distribution of gender for immigrants and non-immigrants differed slightly in comparison to the distribution for all of Canada (Chart 2.29). The distributions were very similar for mathematics and general science. Immigrant females represented $37.0 \%$ of immigrants in mathematics, while non-immigrant females represented $35.7 \%$. The largest difference was seen in chemistry/physics. Immigrant females in chemistry/physics represented $39.2 \%$ of all immigrants in biology, while non-immigrant females represented 26.0\%.

Chart 2.29 - Percentage of major field of study, sex and immigration status, in Quebec (minus the North) in 2011


Source: National Household Survey 2011

### 2.8 MAJOR FIELD OF STUDY BY SEX AND GENERATION STATUS

Generation status refers to whether or not the person or the person's parents were born in Canada. It identifies persons as being first generation, second generation or third generation or more. First generation refers to people who were born outside Canada. Second generation includes individuals who were born in Canada and had at least one parent born outside Canada. Third generation or more refers to people who are born in Canada with both parents born in Canada. They may have several generations of ancestors born in Canada, or their grandparents may have been born abroad ${ }^{5}$. This variable was explored across all Canadians who identified their major field of study as one of the STEM fields of interest; agriculture, biochemistry, biology, chemistry, computer science, engineering, general science, mathematics and physics

The distribution of gender across generation status was relatively the same in agriculture, biochemistry, biology, and general science (Chart 2.30). For example, in agriculture, the distribution of females was approximately $35 \%$ for all three generations. Similarly, in biology, the distribution of females was approximately $57 \%$ for all three generations. In chemistry, computer science, engineering, mathematics and physics, the distribution of first generation females was slightly higher than for second and third generations. In engineering, the distribution of first generation females was $17.3 \%$, while the distribution for second generation females was $10.4 \%$, and $10.9 \%$ for third generation. The largest difference was seen in physics, where first generation females represented $25.6 \%$, and second generation females represented $11.3 \%$, with third generation was $14.7 \%$.

Chart 2.30 - Percentage of major field of study, sex and generation status, in Canada in 2011


Source: National Household Survey 2011

### 2.9 MAJOR FIELD OF STUDY BY SEX, GENERATION STATUS ACROSS SIX REGIONS

For valid analysis across the regions, it was necessary to combine biochemistry, chemistry and physics into general science, and to combine math and computer science together. As well, agriculture was excluded, since the number of observations in each cell was too low to produce reliable estimates.

For these new categories, the distribution of gender across the three generations was very similar in biology, and general science (Chart 2.31). There was a slight difference in math/computer science, where first generation females represented $36.0 \%$, while the second generation females were at $29.1 \%$ and $31.8 \%$, respectively. The largest difference was seen in engineering, where first generation females represented $17.3 \%$, and the other two generations were at approximately $10 \%$.

Chart 2.31 - Percentage of major field of study, sex and generation status, in Canada in 2011


Source: National Household Survey 2011

In the Atlantic provinces, the distribution of generation status differed slightly than for all of Canada (Chart 2.32). There were fewer first generation females in biology, at $38.8 \%$, which increased to $55.7 \%$ for the third generation. A similar trend was seen in both general science and math/computer science. First generation females represented $39.6 \%$ of first generation respondents, while third generation females represented $47.6 \%$.

Chart 2.32 - Percentage of major field of study, sex and generation status, in the Atlantic provinces in 2011


Source: National Household Survey 2011
In British Columbia, the distribution of gender was relatively the same across the generation statuses in biology and general science (Chart 2.33). First generation females represented $54.9 \%$ of those who reported their major field of study as biology, while third generation females were $53.5 \%$. The largest difference was seen in engineering, where first generation females were $16.5 \%$, with second generation at $8.9 \%$, and third at $11.1 \%$.

Chart 2.33 - Percentage of major field of study, sex and generation status, in British Columbia in 2011


Source: National Household Survey 2011

The distribution of gender across generation status was more varied in the North than in the rest of Canada (Chart 2.34). For example, first generation females represented $44.4 \%$ of those who identified general science as their major field of study, while second generation females represented $38.1 \%$, and third generation females $46.5 \%$. The largest difference was seen in biology, where first generation females represented $23.1 \%$, second generation represented 78.6\% and third generation represented 51.2\%.

Chart 2.34 - Percentage of major field of study, sex and generation status, in the North in 2011


Source: National Household Survey 2011
In Ontario, the distribution of gender was relatively the same across generation status in biology and general science (Chart 2.35). First generation females represented $59.9 \%$ of all those who identified as first generation, while third generation females were $58.0 \%$. The largest differences were seen in engineering and math/computer science. First generation females in math/computer science represented $37.1 \%$, with second generation at $29.6 \%$, and third at $32.4 \%$.

Chart 2.35- Percentage of major field of study, sex and generation status, in Ontario in 2011


Source: National Household Survey 2011

In the Prairies, the distribution of gender across generation status was relatively stable across the three generations (Chart 2.36). For example, in general science, first generation females represented $42.7 \%$ of those who identified general science as their major field of study, with second generation females were $41.3 \%$, and third generation females were $42.1 \%$. The largest difference was seen in math/computer science, where first generation females represented $39.5 \%$ of all those who identified as first generation, second generation was at $29.5 \%$, and third at $33.3 \%$.

Chart 2.36 - Percentage of major field of study, sex and generation status, in the Prairies in 2011


Source: National Household Survey 2011
In Quebec, the distribution of gender across generation status was relatively constant in biology, general science and math/computer science (Chart 2.37). In general science, first generation females represented $40.9 \%$ of those who identified as first generation, second generation females were at $37.0 \%$ and third at $41.0 \%$. In engineering, the distribution of first generation females was $18.4 \%, 12.2 \%$ for second generation and $10.3 \%$ for third generation.

Chart 2.37 - Percentage of major field of study, sex and generation status, in Quebec in 2011


Source: National Household Survey 2011

### 2.10 MAJOR FIELD OF STUDY BY SEX AND INDIGENOUS STATUS

Indigenous status refers to whether the person reported being an Aboriginal person, that is, First Nations, Métis or Inuk and/or being a Registered or Treaty Indian (that is, registered under the Indian Act of Canada) and/or being a member of a First Nation or Indian band ${ }^{6}$. This variable was explored across all Canadians who identified their major field of study as one of the STEM fields of interest; agriculture, biochemistry, biology, chemistry, computer science, engineering, general science, mathematics and physics.

There were a few similarities across the distribution of gender for Indigenous and non-Indigenous peoples (Chart 2.38). The distribution of gender across major field of study was approximately equal for general science and biochemistry, for both Indigenous and non-Indigenous people. As well, females represented approximately 40\% of those who identified their field of study as mathematics for both groups. For those who identified physics as their major field of study, females represented approximately $20 \%$ of the distribution, for both Indigenous and non-Indigenous people. The largest difference in gender distribution was seen in engineering, where females represented about 15\% of the distribution of major field of study, for both groups.

Chart 2.38 - Percentage of major field of study, sex and Indigenous status, in Canada in 2011


Source: National Household Survey 2011

The distribution of both groups across gender did differ slightly in two fields. There were more Indigenous females who identified computer science as their major field of study, at $43.6 \%$ than for non-Indigenous females, at $31.9 \%$. As well, the distribution of gender in chemistry was $51.7 \%$ for Indigenous females, but only $39 \%$ for females who identified as non-Indigenous.

### 2.11 MAJOR FIELD OF STUDY BY SEX, INDIGENOUS STATUS AND SIX REGIONS

For valid analysis across the regions, it was necessary to combine biochemistry, chemistry and physics into general science, and to combine math and computer science. As well, agriculture was dropped, since the number of observations in each cell was too low to produce reliable estimates.

The distribution of Indigenous and non-Indigenous people across gender was approximately equal for engineering (Chart 2.39). About $15 \%$ of those whose field of study was math/computer science were Indigenous females, while 13\% were non-Indigenous females. The largest difference was seen in math/computer science, where the distribution of females was approximately $10 \%$ higher for Indigenous females, at $43.4 \%$, while non-Indigenous females represented 33.0\%.

Chart 2.39 - Percentage of major field of study, sex and Indigenous status, in Canada in 2011


Source: National Household Survey 2011

For the Atlantic provinces, the distribution of Indigenous females in all programs was slightly higher than the distribution of non-Indigenous females (Chart 2.40). The distributions were similar in engineering, with Indigenous females representing $13.6 \%$ of Indigenous people whose major field of study was engineering, while non-Indigenous females represented $11.27 \%$. The largest difference was seen in biology, where Indigenous females represented $70.0 \%$, while non-Indigenous females represented 51.7\%.

Chart 2.40 - Percentage of major field of study, sex and Indigenous status, in the Atlantic provinces in 2011


Source: National Household Survey 2011
In British Columbia, the distribution of gender for Indigenous and non-Indigenous people was very similar in biology and general sciences (Chart 2.41). Indigenous females represented $46.7 \%$ of Indigenous people who identified general science as their major field of study, while non-Indigenous females represent 41.5\%. A larger difference was seen in math/computer science, where Indigenous females represented $42.9 \%$ of Indigenous people in math/computer science, while non-Indigenous females represented 33.4\%.

Chart 2.41 - Percentage of major field of study, sex and Indigenous status, in British Columbia in 2011


Source: National Household Survey 2011

In the North, the distribution of gender for Indigenous and non-Indigenous people was almost the same in general science (Chart 2.42). Indigenous females represented $44.4 \%$ of Indigenous people who identified their major field of study as general science, while non-Indigenous females represented $43.2 \%$. The largest difference was seen in math/computer science, where Indigenous females represented $46.7 \%$ of math/computer science, while nonIndigenous females represented $38.0 \%$.

Chart 2.42 - Percentage of major field of study, sex and Indigenous status, in the North in 2011


Source: National Household Survey 2011
In Ontario, the distribution of gender in engineering was very similar for Indigenous and non-Indigenous people (Chart 2.43). Indigenous females represented $11.8 \%$ of Indigenous people who identified engineering as their major field of study, while non-Indigenous females represented $14.0 \%$. The largest differences were seen in general science and math/computer science. Indigenous females represented $56.5 \%$ of Indigenous people who were in general science, while non-Indigenous females represented 44.2\%.

Chart 2.43 - Percentage of major field of study, sex and Indigenous status, in Ontario in 2011


Source: National Household Survey 2011

The distribution of gender for Indigenous and non-Indigenous people in the Prairies was very similar to the distribution for all of Canada (Chart 2.44). The smallest differences were seen in engineering, where Indigenous females represented $17.9 \%$ and non-Indigenous females 14.4\%. The largest differences were seen in general science and math/computer science. Indigenous females represented $46.9 \%$ of Indigenous people who reported their major field of study as math/computer science, while non-Indigenous females represented 34.4\%.

Chart 2.44 - Percentage of major field of study, sex and Indigenous status, in the Prairies in 2011


Source: National Household Survey 2011
In Quebec, the distribution of gender was very similar for Indigenous people and non-Indigenous people in engineering and math/computer science (Chart 2.45). In math/computer science, Indigenous females represented 28.6\%, and nonIndigenous females represented $28.3 \%$. This difference was much smaller than the difference reported for all of Canada. The largest difference was seen in general science, where Indigenous females represented $30.0 \%$ of Indigenous people who reported general science as their field of major study, while non-Indigenous females represented $40.7 \%$.

Chart 2.45 - Percentage of major field of study, sex and Indigenous status, in Quebec in 2011


Source: National Household Su

## 3. WAGES AND EMPLOYMENT IN STEM FIELDS

The population corresponds to all persons aged 15 years and over residing in the provinces of Canada other than Nunavut, Yukon and the Northwest Territories, with the exception of the following: persons living on Indian reserves, full-time members of the regular Armed Forces, and persons living in institutions ${ }^{7}$ who reported working in STEM fields under the North American Industry Classification System (NAICS) ${ }^{8}$ and who were currently employed. The average hourly wage in Canadian dollars (CAD) is reported across a span of nine years. Note that there is no information for 2009, as the size of the subset of interest did not allow for reliable interpretations. As well, due to the data constraints, the classification of STEM fields are listed as: Agriculture, Biology, Engineering, Math/Computer Sciences, and General Sciences. These STEM fields include all education levels (i.e. no education, high school equivalency, Masters, etc.).

### 3.1 WAGES BY SEX

Average salary in STEM fields does not appear to be independent of gender, as seen in Chart 3.1. In 2006, men earned almost ten dollars more an hour, at $\$ 33.70$, while women earned $\$ 26.27$ an hour. For the next few years, the average wage appeared to be relatively similar for both genders. For example, in 2007, women earned $\$ 30.19$ an hour, and men earned $\$ 31.48$, and in 2011, women earned $\$ 31.43$ an hour, and men earned $\$ 30.65$. However, in 2012, a larger difference in wages is seen again, with men earning $\$ 35.58$ an hour and women $\$ 29.57$ an hour. In 2016, women earned even less, at $\$ 31.58$ an hour, and men at $\$ 38.11$ an hour.

Chart 3.1 - Average hourly wage in STEM fields in Canada by sex, from 2006-2016


Source: Labour Force Survey 2006-2016

### 3.2 WAGES BY SEX AND PROGRAM

For engineering, agriculture, general science and biology, males earned overall a higher average hourly wage than females (Chart 3.2). For example, in agricultural fields in 2006, men earned $\$ 35.17$ an hour, and women earned $\$ 24.61$. Ten years later, in 2016, women earned $\$ 29.03$ an hour, and men earned $\$ 36.04$. As well, in biology in 2006, women earned $\$ 21.68$ an hour and men earned $\$ 32.95$. In 2016 the difference was much larger, with women earning $\$ 27.84$ an hour, and men earning $\$ 43.24$ an hour.

Chart 3.2 - Average hourly wage in Agriculture, Biology, Engineering, Math/Computer Sciences, General Sciences and Veterinary/Dentist/Doctor fields in Canada by sex, from 2006-2016.



Source: Labour Force Survey 2006-2016
In math and computer sciences, women initially earned more an hour than men (Chart 3.2). In 2008, women earned $\$ 39.44$ an hour, and men earned $\$ 18.22$. However, there was a reversal of this trend in 2012, with men earning $\$ 46.54$ an hour, and women earning $\$ 25.78$. In 2016, women earned $\$ 24.98$ an hour, and men $\$ 23.08$. It is important to recall that these values for math/computer science are calculated for all education levels, and the large fluctuations in hourly salary may be heavily influence by the rapidly-changing field of technology. A more focused study accounting for education level may provide further information.

### 3.3 EMPLOYMENT BY SEX AND PROGRAM

The distribution of gender across years, for persons aged 15 years and over residing in the provinces of Canada (with the exceptions listed in the beginning of the section) who reported working in STEM fields under the North American Industry Classification System (NAICS) ${ }^{[5]}$ and were also employed. Again, due to the data constraints, the classification of STEM fields are listed as: Agriculture, Biology, Engineering, Math/Computer Sciences, and General Sciences. These fields include all education levels (i.e. no education, high school equivalency, Masters, etc.).

The distribution of gender for those who were employed was not equal across STEM fields (Chart 3.3). In 2006, women represented $18.32 \%$ of those employed in STEM fields. This proportion reached a high of $25.05 \%$ in 2015 , however dropped to $20.06 \%$ in 2016.

Chart 3.3 - Distribution of gender for employment STEM fields in Canada, from 2006-2016


Source: Labour Force Survey 2006-2016

The proportion of females who were employed in agricultural fields in Canada was $14.42 \%$ in 2006 (Chart 3.4). By 2016 the distribution of gender across employment was almost equal, at $50.46 \%$ for females, and $49.54 \%$ for males. \%. For those employed in biology, the proportion who were female was approximately the same as males, at $57.65 \%$. In 2016, the proportion was quite a bit lower for females, at $38.57 \%$.

Chart 3.4 - Distribution of gender for employment in Agriculture, Biology, Engineering, Math/Computer Sciences, General Sciences and Veterinary/Dentist/Doctor in Canada, from 2006-2016



Source: Labour Force Survey 2006-2016
The proportion of females who were employed in general sciences in 2006 was $26.09 \%$ (Chart 3.4). This reached a high of $40.33 \%$ in 2013, but returned to a lower proportion in 2016, at $27.45 \%$. In math/computer science in 2006, the proportion who were employed and were female was $38.52 \%$. This reached a high of $44.99 \%$ in 2013, and returned to a lower proportion in 2016 at $36.37 \%$. The field that has the lowest distribution of employed females is engineering. In 2006, the proportion of females who were employed in engineering was $12.47 \%$. This proportion was slightly higher in 2016, with $17.07 \%$ of those employed in engineering female.
4. APPENDIX
4.1 TABLES OF COUNTS FOR UNDERGRADUATE AND GRADUATE DEGREES AWARDED BY SEX

Table 1.1
Count of sex across post-secondary degree obtained and STEM fields in Canada, for 2000-2009

| Program | 2000 | 2005 | 2009 |
| :---: | :---: | :---: | :---: |
| Agriculture |  |  |  |
| Female | 1422 | 1887 | 1732 |
| Male | 1999 | 1698 | 1689 |
| Biology |  |  |  |
| Female | 6675 | 7412 | 8206 |
| Male | 3995 | 3767 | 4803 |
| Chemistry |  |  |  |
| Female | 849 | 707 | 730 |
| Male | 894 | 692 | 1002 |
| Computer Science |  |  |  |
| Female | 4522 | 2961 | 1491 |
| Male | 8129 | 10253 | 6751 |
| Engineering |  |  |  |
| Female | 4558 | 5430 | 5532 |
| Male | 18026 | 22603 | 26535 |
| General Science |  |  |  |
| Female | 948 | 965 | 2596 |
| Male | 887 | 764 | 2700 |
| Mathematics |  |  |  |
| Female | 793 | 893 | 675 |
| Male | 1046 | 1220 | 1261 |
| Physics |  |  |  |
| Female | 302 | 202 | 121 |
| Male | 701 | 817 | 904 |

Data used for chart 1.1. Source: National Graduates Survey 2000-2009

Table 1.2
Count of sex across type of post-secondary degree obtained and STEM fields in Canada, for 2000-2009

|  | Bachelor |  |  | Doctorate |  |  | Masters |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Program | 2000 | 2005 | 2009 | 2000 | 2005 | 2009 | 2000 | 2005 | 2009 |
| Agriculture |  |  |  |  |  |  |  |  |  |
| Female | 536 | 502 | 465 | 34 | 30 | 47 | 140 | 132 | 245 |
| Male | 624 | 351 | 276 | 47 | 31 | 33 | 174 | 126 | 153 |
| Biology |  |  |  |  |  |  |  |  |  |
| Female | 5242 | 5755 | 6290 | 242 | 268 | 511 | 593 | 984 | 1039 |
| Male | 3036 | 2805 | 3343 | 347 | 339 | 436 | 450 | 472 | 830 |
| Chemistry/Physics |  |  |  |  |  |  |  |  |  |
| Female | 708 | 664 | 487 | 66 | 59 | 115 | 173 | 122 | 191 |
| Male | 1036 | 967 | 1308 | 251 | 179 | 307 | 229 | 258 | 264 |
| Computer Science |  |  |  |  |  |  |  |  |  |
| Female | 1294 | 1055 | 476 | 27 | 25 | 63 | 369 | 367 | 408 |
| Male | 2656 | 4638 | 2533 | 51 | 76 | 169 | 491 | 859 | 838 |
| Engineering |  |  |  |  |  |  |  |  |  |
| Female | 2236 | 2731 | 2533 | 75 | 83 | 202 | 444 | 725 | 907 |
| Male | 6792 | 8857 | 11088 | 470 | 399 | 749 | 1358 | 2745 | 2830 |
| General Science |  |  |  |  |  |  |  |  |  |
| Female | 483 | 613 | 1711 | 18 | 17 | 42 | 61 | 119 | 422 |
| Male | 428 | 369 | 1466 | 54 | 41 | 169 | 141 | 134 | 638 |
| Mathematics |  |  |  |  |  |  |  |  |  |
| Female | 692 | 693 | 381 | 14 | 27 | 43 | 82 | 160 | 235 |
| Male | 754 | 907 | 737 | 86 | 52 | 135 | 196 | 207 | 274 |
| Data used for |  |  |  | Sour | Natio | Grad | ates Sur | vey 20 | 0-2009 |

Table 1.3
Count of sex across visible minority status, and degree obtained in STEM fields in Canada, for 2000-2009

| Row Labels | 2000 |  | 2005 |  | 2009 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Not | Visible Minority | Not | Visible Minority | Not | Visible Minority |
| Agriculture |  |  |  |  |  |  |
| Female | 1335 | 81 | 1749 | 123 | 1489 | 218 |
| Male | 1823 | 117 | 1590 | 94 | 1467 | 163 |
| Biology |  |  |  |  |  |  |
| Female | 4903 | 1413 | 5305 | 2063 | 5799 | 2280 |
| Male | 2953 | 915 | 2511 | 1138 | 3506 | 1250 |
| Chemistry |  |  |  |  |  |  |
| Female | 608 | 231 | 511 | 184 | 324 | 393 |
| Male | 685 | 185 | 485 | 199 | 661 | 324 |
| Computer Science |  |  |  |  |  |  |
| Female | 3198 | 1167 | 1761 | 1173 | 844 | 561 |
| Male | 5420 | 2146 | 6610 | 3559 | 4330 | 2196 |
| Engineering |  |  |  |  |  |  |
| Female | 3351 | 1008 | 3350 | 1979 | 3544 | 1610 |
| Male | 13196 | 4077 | 15224 | 7063 | 17191 | 7771 |
| General Science |  |  |  |  |  |  |
| Female | 885 | 57 | 761 | 197 | 1382 | 1172 |
| Male | 838 | 29 | 618 | 145 | 1528 | 1066 |
| Mathematics |  |  |  |  |  |  |
| Female | 472 | 286 | 517 | 336 | 363 | 245 |
| Male | 708 | 275 | 687 | 527 | 646 | 506 |
| Physics |  |  |  |  |  |  |
| Female | 207 | 64 | 169 | 33 | 84 | 35 |
| Male | 588 | 94 | 647 | 167 | 694 | 186 |

Data used for charts 1.10-1.18
Source: National Graduates Survey 2000-2009

Table 1.4
Count of sex across Indigenous status, and degree obtained in STEM fields in Canada, for 2000-2009

|  | 2000 |  | 2005 |  | 2009 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Row Labels | Indigenous | Not | Indigenous | Not | Indigenous | Not |
| Biology |  |  |  |  |  |  |
| Female | 110 | 6543 | 85 | 7288 | 246 | 7662 |
| Male | 25 | 3971 | 34 | 3615 | 48 | 4665 |
| Engineering |  |  |  |  |  |  |
| Female | 29 | 4526 | 81 | 5250 | 71 | 5225 |
| Male | 315 | 17634 | 463 | 21936 | 704 | 23979 |
| General Science |  |  |  |  |  |  |
| Female | 44 | 3472 | 80 | 3650 | 116 | 4904 |
| Male | 45 | 4377 | 46 | 3899 | 73 | 5950 |
| Math/Computer Science |  |  |  |  |  |  |
| Female | 130 | 5156 | 114 | 3691 | 90 | 1908 |
| Male | 199 | 8943 | 148 | 11273 | 252 | 7300 |

3.2 TABLES OF COUNTS FOR MAJOR FIELD OF STUDY

Table 2.1
Count of major field of study and sex in Canada in 2011

| Program | Female | Male |
| :--- | ---: | ---: |
| Agriculture | 72360 | 130900 |
| Biochemistry | 14150 | 13200 |
| Biology | 95500 | 72000 |
| Chemistry | 26020 | 40420 |
| Computer | 158710 | 335970 |
| Science | 183170 | 1163100 |
| Engineering | 113300 | 127400 |
| General Science | 32030 | 48500 |
| Mathematics | 7230 | 28310 |
| Physics | Source: NHS2011 |  |
| Data used for chart 2.1 |  |  |

Table 2.2
Count of major field of study and sex in Canadian regions in 2011

| Program | Atlantic | BC | North | Ontario | Prairies | Quebec |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Agriculture |  |  |  |  |  |  |
| Female | 4110 | 10870 | 90 | 23410 | 14640 | 19230 |
| Male | 5640 | 13880 | 110 | 44920 | 35020 | 31320 |
| Biology |  |  |  |  |  |  |
| Female | 5430 | 15600 | 340 | 48970 | 15290 | 24010 |
| Male | 5000 | 13840 | 340 | 34540 | 12760 | 18730 |
| Chemistry/Physics |  |  |  |  |  |  |
| Female | 1370 | 4910 | 30 | 15970 | 4300 | 6670 |
| Male | 3060 | 10480 | 80 | 32660 | 8270 | 14170 |
| Computer Science |  |  |  |  |  |  |
| Female | 12500 | 18830 | 280 | 68850 | 22470 | 35780 |
| Male | 18740 | 39520 | 460 | 139850 | 43210 | 94180 |
| Engineering |  |  |  |  |  |  |
| Female | 8040 | 23300 | 410 | 79330 | 34180 | 37900 |
| Male | 62890 | 147430 | 2020 | 489690 | 201110 | 259960 |
| General Science |  |  |  |  |  |  |
| Female | 6820 | 15450 | 390 | 45770 | 19510 | 25350 |
| Male | 6620 | 18160 | 460 | 45120 | 24370 | 32660 |
| Mathematics |  |  |  |  |  |  |
| Female | 980 | 4050 | 60 | 18450 | 3530 | 4960 |
| Male | 1930 | 5640 | 60 | 26930 | 5120 | 8820 |

Table 2.3
Count of major field of study and sex, by visible minority in Canada in 2011

| Program | Not | Visible Minority |
| :---: | :---: | :---: |
| Agriculture |  |  |
| Female | 62220 | 10140 |
| Male | 115100 | 15800 |
| Biochemistry |  |  |
| Female | 9090 | 5060 |
| Male | 8640 | 4560 |
| Biology |  |  |
| Female | 67330 | 28170 |
| Male | 52410 | 19590 |
| Chemistry |  |  |
| Female | 13960 | 12070 |
| Male | 26130 | 14290 |
| Computer Science |  |  |
| Female | 103950 | 54770 |
| Male | 228350 | 107620 |
| Engineering |  |  |
| Female | 113610 | 69560 |
| Male | 834600 | 328500 |
| General Science |  |  |
| Female | 79600 | 33690 |
| Male | 94550 | 32850 |
| Mathematics |  |  |
| Female | 19390 | 12640 |
| Male | 32570 | 15930 |
| Physics |  |  |
| Female | 4040 | 3190 |
| Male | 20360 | 7950 |

Data for chart 2.9. Source: National Household Survey 2011

Table 2.4
Count of major field of study and sex, by visible minority in Canadian regions in 2011

|  | Female |  | Male |  |
| :---: | :---: | :---: | :---: | :---: |
| Row Labels | Not | Visible Minority | Not | Visible Minority |
| Agriculture |  |  |  |  |
| Atlantic | 4030 | 80 | 5460 | 180 |
| BC | 8570 | 2300 | 11050 | 2830 |
| Ontario | 18820 | 4590 | 37750 | 7170 |
| Prairies | 12850 | 1800 | 31790 | 3240 |
| Quebec | 17880 | 1360 | 28960 | 2360 |
| Biology |  |  |  |  |
| Atlantic | 5030 | 400 | 4370 | 630 |
| BC | 10340 | 5260 | 9690 | 4150 |
| Ontario | 30190 | 18780 | 22040 | 12500 |
| Prairies | 11390 | 3900 | 9380 | 3370 |
| Quebec | 19140 | 4880 | 15240 | 3490 |
| Chemistry/Physics |  |  |  |  |
| Atlantic | 1220 | 150 | 2720 | 340 |
| BC | 2090 | 2820 | 6510 | 3970 |
| Ontario | 7630 | 8340 | 20560 | 12100 |
| Prairies | 2380 | 1930 | 5680 | 2600 |
| Quebec | 4650 | 2020 | 10940 | 3230 |
| Computer Science |  |  |  |  |
| Atlantic | 11870 | 640 | 17520 | 1210 |
| BC | 9990 | 8840 | 22390 | 17130 |
| Ontario | 37910 | 30940 | 80320 | 59530 |
| Prairies | 14980 | 7500 | 30810 | 12400 |
| Quebec | 28970 | 6810 | 76900 | 17280 |
| Engineering |  |  |  |  |
| Atlantic | 7280 | 760 | 59160 | 3730 |
| BC | 11960 | 11330 | 93700 | 53730 |
| Ontario | 43810 | 35530 | 315960 | 173730 |
| Prairies | 21550 | 12630 | 144990 | 56130 |
| Quebec | 28660 | 9250 | 219040 | 40910 |
| General Science |  |  |  |  |


| Atlantic | 6510 | 320 | 6330 | 290 |
| :--- | ---: | ---: | ---: | ---: |
| BC | 9420 | 6030 | 11640 | 6520 |
| Ontario | 26900 | 18870 | 28990 | 16130 |
| Prairies | 14110 | 5400 | 19070 | 5300 |
| Quebec | 22290 | 3060 | 28070 | 4590 |
| Mathematics |  |  |  |  |
| Atlantic | 820 | 160 | 1740 | 200 |
| BC | 1970 | 2090 | 3270 | 2360 |
| Ontario | 10770 | 7680 | 17440 | 9490 |
| Prairies | 2080 | 1450 | 3450 | 1670 |
| Quebec | 3710 | 1260 | 6610 | 2210 |

Data used for charts 2.10-2.15 Source: National Household Survey 2011

Table 2.5
Count of major field of study and sex, by immigration status in Canada in 2011

| Row Labels | Immigrant | Not |
| :---: | :---: | :---: |
| Agriculture |  |  |
| Female | 16860 | 54230 |
| Male | 31260 | 98390 |
| Biochemistry |  |  |
| Female | 5900 | 7900 |
| Male | 5280 | 7520 |
| Biology |  |  |
| Female | 31700 | 60700 |
| Male | 23340 | 46560 |
| Chemistry |  |  |
| Female | 16460 | 8640 |
| Male | 20510 | 18850 |
| Computer Science |  |  |
| Female | 62810 | 91540 |
| Male | 118570 | 208490 |
| Engineering |  |  |
| Female | 94440 | 82520 |
| Male | 456570 | 682450 |
| General Science |  |  |
| Female | 36260 | 74940 |
| Male | 38490 | 86780 |
| Mathematics |  |  |
| Female | 16540 | 14380 |
| Male | 21230 | 25980 |
| Physics |  |  |
| Female | 4520 | 2180 |
| Male | 13450 | 13680 |
| Data used for chart 2.16 | Source | NHS 2011 |

Table 2.6
Count of major field of study and sex, by immigration status in Canadian regions in 2011

|  | Immigrant |  | Not |  |
| :---: | :---: | :---: | :---: | :---: |
| Row Labels | Female | Male | Female | Male |
| Biology |  |  |  |  |
| Atlantic | 630 | 930 | 4720 | 3880 |
| British Columbia | 5930 | 4920 | 9140 | 8550 |
| North | 30 | 100 | 320 | 230 |
| Ontario | 20480 | 13750 | 27310 | 20020 |
| Prairies | 3950 | 3820 | 10680 | 8490 |
| Quebec | 6590 | 5100 | 16430 | 12910 |
| Engineering |  |  |  |  |
| Atlantic | 940 | 5790 | 6930 | 55940 |
| British Columbia | 14050 | 72500 | 8270 | 71720 |
| North | 90 | 370 | 320 | 1600 |
| Ontario | 50940 | 248930 | 26200 | 233050 |
| Prairies | 14300 | 65620 | 18310 | 128540 |
| Quebec | 14110 | 63360 | 22490 | 191600 |
| General Science |  |  |  |  |
| Atlantic | 710 | 1150 | 7320 | 8280 |
| British Columbia | 9600 | 13020 | 10090 | 14970 |
| North | 70 | 100 | 350 | 440 |
| Ontario | 31830 | 37510 | 28570 | 38860 |
| Prairies | 7690 | 10130 | 15460 | 21500 |
| Quebec | 7340 | 10550 | 23980 | 35250 |
| Math/Computer Science |  |  |  |  |
| Atlantic | 810 | 1710 | 12430 | 18640 |
| British Columbia | 12250 | 20750 | 9720 | 22520 |
| North | 60 | 90 | 260 | 430 |
| Ontario | 46260 | 78130 | 38800 | 85060 |
| Prairies | 9280 | 14290 | 15470 | 32200 |
| Quebec | 10690 | 24830 | 29250 | 75610 |
| Data used for charts 2.1 | Source | ion | sehold | vey 2011 |

Table 2.7
Count of major field of study and sex, by immigration status in five Canadian regions in 2011

|  | Immigrant |  | Not |  |
| :---: | :---: | :---: | :---: | :---: |
| Row Labels | Female | Male | Female | Male |
| Agriculture |  |  |  |  |
| Atlantic | 310 | 760 | 3790 | 4870 |
| British Columbia | 3230 | 5330 | 7410 | 8460 |
| Ontario | 8150 | 14480 | 14910 | 30110 |
| Prairies | 2850 | 6420 | 11310 | 28080 |
| Quebec | 2290 | 4240 | 16760 | 26800 |
| Biology |  |  |  |  |
| Atlantic | 630 | 930 | 4720 | 3880 |
| British Columbia | 5930 | 4920 | 9140 | 8550 |
| Ontario | 20480 | 13750 | 27310 | 20020 |
| Prairies | 3950 | 3820 | 10680 | 8490 |
| Quebec | 6590 | 5100 | 16430 | 12910 |
| Chemistry/Physics |  |  |  |  |
| Atlantic | 260 | 570 | 1060 | 2390 |
| British Columbia | 3420 | 5790 | 1270 | 4370 |
| Ontario | 11400 | 18680 | 3930 | 13100 |
| Prairies | 2440 | 3580 | 1620 | 4260 |
| Quebec | 3440 | 5320 | 2930 | 8340 |
| Computer Science |  |  |  |  |
| Atlantic | 640 | 1370 | 11680 | 17120 |
| British Columbia | 9720 | 17760 | 8400 | 20110 |
| Ontario | 36130 | 65490 | 30940 | 71160 |
| Prairies | 7550 | 12360 | 13890 | 29240 |
| Quebec | 8740 | 21510 | 26400 | 70490 |
| Engineering |  |  |  |  |
| Atlantic | 940 | 5790 | 6930 | 55940 |
| British Columbia | 14050 | 72500 | 8270 | 71720 |
| Ontario | 50940 | 248930 | 26200 | 233050 |
| Prairies | 14300 | 65620 | 18310 | 128540 |
| Quebec | 14110 | 63360 | 22490 | 191600 |
| General Science |  |  |  |  |
| Atlantic | 450 | 590 | 6260 | 5890 |
| British Columbia | 6180 | 7230 | 8820 | 10600 |
| Ontario | 20430 | 18820 | 24640 | 25760 |
| Prairies | 5240 | 6550 | 13840 | 17240 |
| Quebec | 3890 | 5230 | 21050 | 26910 |
| Mathematics |  |  |  |  |
| Atlantic | 180 | 340 | 750 | 1520 |


| British Columbia | 2520 | 2990 | 1310 | 2410 |
| :--- | ---: | ---: | ---: | ---: |
| Ontario | 10130 | 12640 | 7860 | 13910 |
| Prairies | 1730 | 1930 | 1590 | 2960 |
| Quebec | 1950 | 3320 | 2850 | 5130 |

Table 2.8
Count of major field of study and sex, by generation status in Canada in 2011

| Program | Female | Male |
| :---: | :---: | :---: |
| Agriculture |  |  |
| First | 18230 | 32640 |
| Second | 8990 | 16580 |
| Third | 45140 | 81670 |
| Biochemistry |  |  |
| First | 6330 | 5730 |
| Second | 2320 | 2450 |
| Third | 5500 | 5030 |
| Biology |  |  |
| First | 35320 | 25810 |
| Second | 17770 | 13430 |
| Third | 42410 | 32760 |
| Chemistry |  |  |
| First | 17480 | 21710 |
| Second | 2480 | 5100 |
| Third | 6070 | 13600 |
| Computer Science |  |  |
| First | 67500 | 128500 |
| Second | 19120 | 49690 |
| Third | 72100 | 157770 |
| Engineering |  |  |
| First | 101000 | 483550 |
| Second | 18230 | 156270 |
| Third | 63940 | 523280 |
| General Science |  |  |
| First | 38750 | 41020 |
| Second | 19940 | 23250 |
| Third | 54610 | 63130 |
| Mathematics |  |  |
| First | 17750 | 22720 |
| Second | 4490 | 7860 |
| Third | 9790 | 17920 |
| Physics |  |  |
| First | 5080 | 14770 |
| Second | 500 | 3930 |
| Third | 1650 | 9600 |
| Data for chart 2.30 | Source | NHS 2011 |

Table 2.9
Count of major field of study and sex, by generation status in Canadian region, in 2011

| Program | Female |  |  | Male |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | First | Second | Third | First | Second | Third |
| Biology |  |  |  |  |  |  |
| Atlantic | 730 | 510 | 4200 | 1150 | 510 | 3340 |
| British Columbia | 6600 | 3490 | 5520 | 5410 | 3030 | 5390 |
| North | 30 | 110 | 210 | 100 | 30 | 200 |
| Ontario | 21910 | 10680 | 16390 | 14660 | 8010 | 11870 |
| Prairies | 4680 | 2790 | 7820 | 4310 | 2500 | 5950 |
| Quebec | 7710 | 2520 | 13780 | 5890 | 1790 | 11040 |
| Engineering |  |  |  |  |  |  |
| Atlantic | 1150 | 390 | 6510 | 7140 | 3960 | 51790 |
| British Columbia | 15080 | 2450 | 5770 | 76240 | 25210 | 45980 |
| North | 90 | 40 | 280 | 430 | 300 | 1300 |
| Ontario | 53280 | 8690 | 17370 | 257760 | 79090 | 152850 |
| Prairies | 15930 | 4370 | 13890 | 73200 | 31160 | 96750 |
| Quebec | 15480 | 2300 | 20120 | 68790 | 16550 | 174610 |
| General Science |  |  |  |  |  |  |
| Atlantic | 950 | 690 | 6550 | 1450 | 1020 | 7210 |
| British Columbia | 10350 | 3860 | 6160 | 13750 | 6090 | 8800 |
| North | 80 | 80 | 270 | 100 | 130 | 310 |
| Ontario | 33390 | 11230 | 17120 | 39200 | 14160 | 24420 |
| Prairies | 8410 | 4140 | 11260 | 11270 | 5890 | 15480 |
| Quebec | 8140 | 2920 | 20970 | 11740 | 4980 | 30120 |
| Math/Computer Science |  |  |  |  |  |  |
| Atlantic | 1060 | 710 | 11710 | 2130 | 1550 | 16990 |
| British Columbia | 13230 | 3330 | 6320 | 22800 | 7900 | 14460 |
| North | 70 | 70 | 190 | 90 | 80 | 350 |
| Ontario | 48660 | 13380 | 25250 | 82310 | 31760 | 52710 |
| Prairies | 10630 | 3180 | 12200 | 16280 | 7600 | 24450 |
| Quebec | 11590 | 2940 | 26210 | 27610 | 8660 | 66740 |
| Data used for charts 2.31-2.37. Source: National Household Survey 2011 |  |  |  |  |  |  |

Table 2.10
Count of major field of study and sex, by Indigenous status in Canada in 2011

| Row Labels | Indigenous | Not |
| :---: | :---: | :---: |
| Agriculture |  |  |
| Female | 1540 | 70820 |
| Male | 2180 | 128720 |
| Biochemistry |  |  |
| Female | 100 | 14050 |
| Male | 120 | 13090 |
| Biology |  |  |
| Female | 1120 | 94370 |
| Male | 620 | 71370 |
| Chemistry |  |  |
| Female | 150 | 25870 |
| Male | 140 | 40280 |
| Computer Science |  |  |
| Female | 4190 | 154520 |
| Male | 5430 | 330540 |
| Engineering |  |  |
| Female | 3120 | 180050 |
| Male | 17390 | 1145710 |
| General Science |  |  |
| Female | 1620 | 111680 |
| Male | 1640 | 125770 |
| Mathematics |  |  |
| Female | 200 | 31830 |
| Male | 290 | 48220 |
| Physics |  |  |
| Female | 40 | 7190 |
| Male | 130 | 28170 |
| Data used for chart 2.38 | Sourc | : NHS 2011 |

Table 2.11
Count of major field of study and sex, by Indigenous status in Canadian regions in 2011


### 4.3 TABLES OF COUNTS FOR EMPLOYMENT RATES AND WAGES IN STEM FIELDS

Table 3.1
Average hourly wage in STEM fields in Canada 2006-2016

| Program | 2006 | 2007 | 2008 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Agriculture |  |  |  |  |  |  |  |  |  |  |
| Female | \$24.61 | \$22.61 | \$28.11 | \$21.43 | \$26.23 | \$25.11 | \$25.70 | \$32.32 | \$26.67 | \$29.03 |
| Male | \$35.17 | \$28.34 | \$31.15 | \$28.65 | \$30.60 | \$27.30 | \$28.81 | \$35.10 | \$35.09 | \$36.04 |
| Biology |  |  |  |  |  |  |  |  |  |  |
| Female | \$21.68 | \$29.89 | \$33.54 | \$24.54 | \$24.88 | \$26.39 | \$25.55 | \$31.67 | \$34.60 | \$27.84 |
| Male | \$32.95 | \$30.59 | \$32.35 | \$33.76 | \$32.27 | \$30.01 | \$31.14 | \$34.52 | \$42.30 | \$43.24 |
| Engineering |  |  |  |  |  |  |  |  |  |  |
| Female | \$31.41 | \$30.42 | \$29.94 | \$28.55 | \$27.58 | \$30.20 | \$31.79 | \$27.92 | \$34.22 | \$40.47 |
| Male | \$33.13 | \$33.15 | \$35.03 | \$31.32 | \$33.54 | \$34.94 | \$34.63 | \$29.43 | \$41.08 | \$43.94 |
| General Science |  |  |  |  |  |  |  |  |  |  |
| Female | \$24.72 | \$31.74 | \$30.27 | \$26.01 | \$29.61 | \$27.21 | \$29.50 | \$31.85 | \$33.14 | \$35.57 |
| Male | \$36.17 | \$30.13 | \$38.00 | \$35.45 | \$34.08 | \$34.27 | \$35.12 | \$40.45 | \$36.22 | \$44.27 |
| Math/Computer Science |  |  |  |  |  |  |  |  |  |  |
| Female | \$27.61 | \$33.77 | \$39.44 | \$22.43 | \$33.22 | \$25.78 | \$28.98 | \$18.00 | \$37.78 | \$24.98 |
| Male | \$29.43 | \$30.46 | \$18.22 | \$24.55 | \$19.89 | \$46.54 | \$45.44 | \$43.96 | \$21.48 | \$23.08 |

Data used for charts 3.1-3.2

Table 3.2
Count of employed in STEM fields by gender in Canada 2006-2016

4.4 ENDNOTES
[1] http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey\&/d=6014\#a2
[2] http://www23.statcan.gc.ca/imdb/pIX.pl?Function=getThemeSub\&PItem Id=97413\&PCE Id=396\&PCE Start=0101000 1\&cc=1
[3]
http://www23.statcan.gc.ca/imdb/pIX.pl?Function=getThemeSub\&PItem Id=97413\&PCE Id=283\&PCE Start=0101000 1\&cc=1
[4] http://www23.statcan.gc.ca/imdb/p3Var.pl?Function=DEC\&Id=45152
[5] http://www12.statcan.gc.ca/nhs-enm/2011/ref/dict/pop001-eng.cfm [6] http://www12.statcan.gc.ca/nhs-enm/2011/ref/dict/pop036-eng.cfm [7] http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey\&SDDS=3701
[8] https://www.statcan.gc.ca/eng/subjects/standard/naics/2017v2/index n

